Music Industry Scalar Analysis Using Unsupervised Fourier Feature Selection
نویسندگان
چکیده
In the continuing investigation of understanding the connection between music information retrieval (MIR) and the economics of music this paper focuses on mining economically viable song attributes. Identical features and attributes found in songs in one genre or place in time can have completely inverse translations as to the economic viability of a song. Partial cognates are pairs of features in two songs that have the same affect in portions of scalar theory, but not completely. Learning when partial cognates differ can be useful for MIR and while feature selection is effective in dimensionality reduction the meta-dimensionality of data in music that generates money it is a non-trivial challenge to determine viable feature selection methods in the field of data mining economically viable music. We present a novel methodology for music industry scalar analysis using unsupervised fourier feature selection.
منابع مشابه
Clustering Music by Genres Using Supervised and Unsupervised Algorithms
This report describes classification methods that recognize the genres of music using both supervised and unsupervised learning techniques. The five genres, classical(C), EDM(E), hip-hop(H), jazz(J) and rock(R), were examined and classified. As a feature selection method, discrete Fourier transform (DFT) converted the raw wave signals of each song into the signal amplitude ordered by their freq...
متن کاملشناسایی خودکار سبک موسیقی
Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...
متن کاملA Feature Selection Approach for Automatic Music Genre Classification
In this paper we present an analysis of the suitability of four different feature sets which are currently employed to represent music signals in the context of the automatic music genre classification. To such an aim, feature selection is carried out through genetic algorithms, and it is applied to multiple feature vectors generated from different segments of the music signal. The feature sets...
متن کاملTransfer Learning by Supervised Pre-training for Audio-based Music Classification
Very few large-scale music research datasets are publicly available. There is an increasing need for such datasets, because the shift from physical to digital distribution in the music industry has given the listener access to a large body of music, which needs to be cataloged efficiently and be easily browsable. Additionally, deep learning and feature learning techniques are becoming increasin...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009